0基础AI入门实战(深度学习+Pytorch) 通俗易懂/0基础入门/案例实战/跨专业提升

0基础AI入门实战(深度学习+Pytorch) 通俗易懂/0基础入门/案例实战/跨专业提升网赚项目-副业赚钱-互联网创业-资源整合久久网创网
0基础AI入门实战(深度学习+Pytorch) 通俗易懂/0基础入门/案例实战/跨专业提升
此内容为免费资源,请登录后查看
R0
免费资源

0基础 AI入门实战(深度学习+Pytorch) 通俗易懂/0基础入门/案例实战/跨专业提升

课程目录

001-课程介绍.mp4

002-1-神经网络要完成的任务分析.mp4

003-2-模型更新方法解读.mp4

004-3-损失函数计算方法.mp4

005-4-前向传指流程解读.mp4

006-5-反向传指演示mp4

007-6-神经网络整体架构详细拆解.mp4

008-7-神经网络效果可视化分析.mp

009-8-神经元个数的作用.mp4

010-9-预处理与dropout的作用.mp4

011-1-卷积神经网络概述分析.mp4

012-2-卷积要完成的任务解读.mp4

013-3-卷积计算详细流程江示.mp4

014-4-层次结梅的作用.mp4

015-5-参数共享的作用.mp4

016-6-池化层的作用与数果.mp4

017-7-整体网络结构架构分析.mp4

018-8-经典网络架构概述mp4

019-1-RNN网络结构原理与问题mp4

020-2-注意力结构历史故事介绍.mp4

021-3-self-attention要解决的问题mg4

022-4-0KV的柔源与作用.mp4

023-5-多头注意力机制的数果.mp4

024-6-位置编码与解码器.mp4

025-7-整体架构总结.mp4

026-8-BERT训练方式分析.mg4

027-1-PyTorch框架与其他框架区别分析.mp4

028-2-CPU与GPU版本安装方法解读mp

029-1-数据集与任务概述.mp4

030-2-基本模块应用测试.mp4

031-3-网络结构定义方法.mp4

032-4-数据源定义简介.mp4

033-5-损实与训练模块分析.mp

034-6-训练一个基本的分类模型mp

035-7-参数对结果的影响.mp4

036-1-任务与数据集解读.mp4

037-2-参数初始化操作解读.m4

038-3-训练流程实例.mp4

039-4-模型学习与预测.mp4

040-1-输入特征通道分析.mp4

041-2-卷积网络参数解读.m4

042-3-卷积网络模型训练.mp4

043-1-任务分析与图像数据基本处理mp4

044-2-数据增强模块.mp4

045-3-数据集与模型选择.mp4

046-4-迁移学习方法解读.mp4

047-5-输出层与棵度设置.mp4

048-6-输出类别个数修改.mp4

049-7-优化器与学习率衰减.mp4

050-8-模型训练方法.mp4

051-9-重新训练全部模型.mp4

052-10-测试结果演示分析.mp4

053-4-实用Dataloader加裁数据并训练模型mp

054-1-Dataloader要完成的任务分析.mp4

055-2-图博教据与标签路径处理.mp4

056-3-Dataloader中需要实现的方法分析.mp4

057-1-数据集与任务目标分析.mp4

058-2-文本数据处理基本流程分析.mp4

059-3-命令行参数与DEBUG.mp4

060-4-训练模型所需基本配置参数分析.mp4

061-5-预料表与学特切分.mp4

062-6-字符预处理转换ID.mp4

063-7-LSTM网络结构基本定义.mp4

064-8-网络模型预测结果输出.mp4

065-9-模型训练任务与总结.mp4

066-1-基本结构与训练好的模型加款.mp4

067-2-服务端处理与预测国数.mp4

068-3-基于Flask测试模型预测结果.mp4

069-1-视觉transformer要完成的任务解读.mp4

070-1-项目源码准备.mp4

071-2-源码DEBUG演示mp4

072-3-Embedding模块实现方法.mp4

073-4-分块要完成的任务.mp4

074-5-QKV计算方法.mp4

075-6-特征加权分配.mp4

076-7-完成前向传播.mp4

077-8-损失计算与训练mp4

本站内容均转载于互联网,并不代表本站立场!如若本站内容侵犯了原著者的合法权益,可联系我们进行处理! 拒绝任何人以任何形式在本站发表与中华人民共和国法律相抵触的言论!
THE END
喜欢就支持一下吧
点赞0赞赏
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容